ANR JCJC
Energy Diffusion in Noisy Hamiltonian Systems
The following publications of the team are related to the project but do not necessarly reply to the initial questions addressed in the project.
-
D. Abanin, W. De Roeck, F. Huveneers, H. Wen-Wei. Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems, Physical Review B : Condensed matter and materials physics, American Physical Society, (2017).
-
Bahadoran, C.; Bodineau, T. Quantitative estimates for the flux of TASEP with dilute site disorder. Electron. J. Probab. 23, no. 44, 44 pp (2018).
-
Bahadoran, C.; Mountford, T.; Ravishankar, K.; Saada, E. Supercritical behavior of asymmetric zero-range process with sitewise disorder. Ann. Inst. H. Poincaré Probab. Statist. 53, no. 2, 766–801 (2017).
-
[C. Bahadoran, T. Mountford, K. Ravishankar, E Saada. Quenched convergence and strong local equilibrium for asymmetric zero-range process with site disorder. arXiv:1804.06148 (2018).
-
Barré, J., Bernardin, C. & Chetrite, R.Density Large Deviations for Multidimensional Stochastic Hyperbolic Conservation Laws. J Stat Phys, 170: 466 (2018).
-
G. Basile, C. Bernardin,M. Jara, T. Komorowski, S. Olla. Thermal conductivity in harmonic lattices with random collisions. Thermal transport in low dimensions, 215–237, Lecture Notes in Phys., 921, Springer, [Cham], 2016.
-
C Bernardin, Diffusion of Energy in Chains of Oscillators with Conservative Noise, From Particle Systems to Partial Differential Equations II, 3-66 (2015).
-
C. Bernardin, A. Dhar, A. Kundu, K. Saito. Fractional diffusion equation description of an open anomalous heat conduction set-up, J. Stat. Mech. 13205 (2019).
-
C. Bernardin, G. Cane et P. Gonçalves. Noisy harmonic chain with a fast flip, in preparation (2019).
-
C. Bernardin, T. Funaki, S. Sethuraman. Derivation of coupled KPZ-Burgers equation from multi-species zero-range processes. arXiv:1908.07863 (2019).
-
C. Bernardin, P. Gonçalves, M. Jara. 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise. Arch. Ration. Mech. Anal. 220 (2016), no. 2, 505–542.
-
C. Bernardin, P. Gonçalves, M. Jara. Weakly harmonic oscillators perturbed by a conservative noise. Ann. Appl. Probab. 28, no. 3, 1315–1355 (2018).
-
C. Bernardin, P. Gonçalves, M. Jara, M. Sasada, M. Simon. From normal diffusion to superdiffusion of energy in the evanescent flip noise limit. J. Stat. Phys. 159, no. 6, 1327–1368 (2015).
-
C. Bernardin, P. Gonçalves, M. Jara, M., Simon. Interpolation process between standard diffusion and fractional diffusion. Ann. Inst. H. Poincaré Probab. Statist. 54, no. 3, 1731–1757 (2018).
-
C. Bernardin, P. Gonçalves, M., Simon. A microscopic derivation of coupled SPDE’s with a KPZ flavor. In preparation (2019).
-
C. Bernardin, P. Gonçalves, M. Jara, M., Simon. Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence, Communications in Mathematical Physics, 361, No. 2, 605-659 (2018).
-
C. Bernardin, P. Goncalves, B. Oviedo Jimenez. Slow to fast infinitely extended reservoirs for the symmetric exclusion process with long jumps, Markov Processes Relat. Fields 25, 217-274 (2019).
-
C. Bernardin, P. Goncalves, B. Oviedo Jimenez.A microscopic model for a one parameter class of fractional laplacians with Dirichlet boundary conditions. arXiv:1803.00792 (2018)
-
C. Bernardin, P. Gonçalves, S. Sethuraman. Occupation times of long-range exclusion and connections to KPZ class exponents. Probab. Theory Related Fields 166, no. 1-2, 365–428 (2016).
-
C. Bernardin, F. Huveneers, J.L. Lebowitz, C. Liverani, S. Olla. Green-Kubo formula for weakly coupled system with dynamical noise. Communications in Mathematical Physics, 334 (3), pp.1377-1412 (2015).
-
Bernardin, C., Huveneers, F. & Olla, S. Hydrodynamic Limit for a Disordered Harmonic Chain. Commun. Math. Phys. 365: 215 (2019).
-
C. Bernardin, B. Oviedo Jimenez. Fractional Fick's Law for the Boundary Driven Exclusion Process with Long Jumps, ALEA Lat. Am. J. Probab. Math. Stat. 14, no. 1, 473–501 (2017).
-
O. Blondel, P. Gonçalves, M. Simon. Convergence to the Stochastic Burgers Equation from a degenerate microscopic dynamics, Electronic Journal of Probability 21 (2016).
-
A. Das, M. Kulkarni, H. Spohn, A. Dhar. Kardar-Parisi-Zhang scaling for the Faddeev-Takhtajan classical integrable spin chain. arXiv:1906.02760 (2019).
-
A. Das, K. Damle, A. Dhar, D. A. Huse, M. Kulkarni, C. B. Mendl, H. Spohn. Nonlinear Fluctuating Hydrodynamics for the Classical XXZ Spin Chain. arXiv:1901.00024 (2019).
-
W. De Roeck, A. Dhar, F. Huveneers, M. Schuetz. Step density profiles in localized chains. J. Stat. Phys. 167, no. 5, 1143–1163 (2017).
-
W. De Roeck, F. Huveneers. Glassy dynamics in strongly anharmonic chains of oscillators. C.R. Physique (2019).
-
W. De Roeck, F. Huveneers. Stability and instability towards delocalization in many-body localization systems. Physical Review B : Condensed matter and materials physics, American Physical Society, 95, pp. 129-155 (2017).
-
W. De Roeck, F. Huveneers. Asymptotic localization of energy in nondisordered oscillator chains. Comm. Pure Appl. Math. 68, no. 9, 1532–1568 (2015).
-
W. De Roeck, F. Huveneers. Can translation invariant systems exhibit a many-body localized phase? From particle systems to partial differential equations. II,173–192, Springer Proc. Math. Stat., 129, Springer, Cham, (2015).
-
Dhar, A., Kundu, A., Lebowitz, J.L.. Transport Properties of the Classical Toda Chain: Effect of a Pinning Potential. J Stat Phys, 175: 1298 (2019).
-
A. Dhar, K. Saito, Heat Transport in Harmonic Systems, Thermal transport in low dimensions, 39-105, Lecture Notes in Phys., 921, Springer, [Cham], (2016).
-
R. Ducatez, F. Huveneers. Anderson Localization for Periodically Driven Systems. Annales Henri Poincaré, Volume 18, Issue 7, pp 2415–2446 (2017).
-
C. Erignoux, M. Simon. Equilibrium fluctuations for the disordered harmonic chain perturbed by an energy conserving noise. arXiv:1402.3617v6 (2018).
-
P. Gonçalves. Hydrodynamics for symmetric exclusion in contact with reservoirs , to appear in Springer Lecture Notes in Mathematics (2017).
-
P. Gonçalves, M. Jara, M. Simon. Second Order Boltzmann–Gibbs Principle for Polynomial Functions and Applications. J. Stat. Phys. 166, no. 1, 90–113 (2017).
-
P. Gonçalves, M. Jara. Stochastic Burgers equation from long range exclusion interactions, Stochastic Processes and their Applications, Volume 127, no. 12, 4029-4052 (2017).
-
P. Gonçalves, M. Jara. Density fluctuations for exclusion processes with long jumps, Probability Theory and Related Fields, Volume 170, Issue 1–2, pp 311–362 (2018).
-
P. Gonçalves, N. Perkowski, M. Simon : Derivation of the SBE equation with Dirichlet boundary conditions, Annales de l'Institut Henri Lebesgue (2017).
-
F. Huveneers. Classical and quantum systems: transport due to rare events, Annalen der Physik, 529 (3) (2017).
-
F. Huveneers. Classical and quantum systems: transport due to rare events, Annalen der Physik, 529 (3) (2017).
-
T. Komorowski, S. Olla, M. Simon. An open microscopic model of heat conduction: evolution and non-equilibrium stationary states. hal-02081200 (2019).
-
David J. Luitz, François Huveneers, Wojciech de Roeck. How a small quantum bath can thermalize long localized chains. Phys. Rev. Lett. 119, 150602 (2017).
-
J. Lukkarinen. Kinetic theory of phonons in weakly anharmonic particle chains, in "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.), Lecture Notes in Physics vol. 921 (2016) pp. 159-214.
-
J. Lukkarinen, M. Marcozzi and A. Nota, Summability of Connected Correlation Functions of Coupled Lattice Fields, J. Stat. Phys. 171(2) (2018) 189-206
-
J. Lukkarinen, M. Marcozzi and A. Nota, Harmonic chain with velocity flips: thermalization and kinetic theory, J. Stat. Phys. 165 (2016) 809-844
-
J. Lukkarinen and M. Marcozzi, Wick polynomials and time-evolution of cumulants, J. Math. Phys. 57 (2016) 083301 (27pp)
-
M. Simon, Diffusion coefficient for the disordered harmonic chain perturbed by an energy conserving noise, From Particle Systems to Partial Differential Equations II, Series: Springer Proceedings in Mathematics & Statistics, Vol. 129 (2015) 355-370.
-
Thimothée Thiery, François Huveneers, Markus Müller, and Wojciech De Roeck. Many-Body Delocalization as a Quantum Avalanche. Phys. Rev. Lett. 121, 140601